Theory of elementary chemical processes.
Quantum and Semiclassical theory for elementary chemical reactions involving three and four atoms. Hyperspherical harmonics and their discrete analogues for the quantum treatment of reactive collisions. Theory of nonadiabatic processes, cold collisions. Hyperspherical approach semiclassical and classical dynamics of to many-body systems. Chirality manifestations in molecular collisions. Potential energy surfaces of tetratomic chiral molecules, internal modes with inversion of chirality. Atom-chiral molecule collision simulations. Hyperspherical representation of potential energy surfaces. Quantum and semiclassical spin networks and application to molecular dynamics and spectroscopy. Exact calculation and asymptotic approximation of nJ symbols, detailed properties for n=2,3 and disentangling of growing complexity spin networks in the classical limit.
Collisional studies with molecular beams: Molecular alignment, potential energy surfaces and photoionization.
Collisional studies are carried out with an experimental apparatus using effusive and supersonic molecular beam sources, a rotating slotted disks velocity selector, a magnetic analyzer, a scattering chamber, and a quadrupole mass spectrometer measuring beam intensity and its attenuation. Cross section measurements, performed under high angular and velocity resolution conditions, provide quantitative information on the intermolecular interaction between projectile and target. A parallel effort is performed to understand the nature and to model the behavior of the relevant potential energy surfaces. Applications involve the study of the stereodynamics of elementary processes in chemical kinetics, laser emission, energy transfer processes, ionization phenomena, neutral and ion molecular reactions of interest for combustion, astrophysical chemistry, and molecular absorption at surfaces of interest for catalysis.